Fluctuations of conserved charges within
dynamic models of heavy-ion collisions

Marlene Nahrgang
SUBATECH, Nantes & FIAS, Frankfurt

FCR workshop, BNL, October 3rd, 2011

FIAS Frankfurt Institute
ubatec for Advanced Studies

TN
%



How to study the QCD phase diagram...

.. be brave and solve
Z(T,uB) /DAqq) Step

ab initio and nonperturbatively,

. be strong and collide heavy
ions at ultrarelativistic energies,

. be creative and study effec-
tive models of QCD.
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Critical point

> m? = 3;7‘2/ -0

» correlation length diverges
E= oo

» universality classes
for QCD: O(4) Ising model in
3d = (0?) o &2

» renormalization group

» critical opalescence

= Large fluctuations in thermal systems!




First order phase transitions

» two degenerate minima
separated by a barrier

» latent heat
» phase coexistence

» supercooling effects in
nonequilibrium situations

> nucleation
» spinodal decomposition

(.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,

J.Randrup, Physics Reports 389 (2004))

= (Large) fluctuations in nonequilibrium situations!



Fluctuations at the critical point

non-monotonic fluctuations in pion and proton multiplicities

1 G,
m2 T wpwk

(AnpAng) = v, (5pk +

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60 (1999))

BUT: critical slowing down
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Fluctuation measures based on the second moments are not
conclusive about the critical behavior.
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Definition of the kurtosis

susceptibilities of conserved charges (N: net-baryon, net-charge
number) or the experimentally feasible net-proton number

1 "InZ(V, T, uy)
xn(T pn) = VT3 BP% ;

quadratic and quartic susceptibilities :

2

Xs = V1T3 ((5) — B(5N2)?)

effective kurtosis:




Higher moments at the critical point

Higher moments of the distribution of conserved quantities are more
sensitive to critical phenomena.

Ko &

(M. A. Stephanov, PRL 102, 032301 (2009))

The kurtosis is negative at the
critical point!
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Kurtosis on the lattice

Thermodynamic susceptibilities can be calculated on the lattice.
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Reproduces the HRG below T and the Stefan-Boltzmann limit at
high temperatures.

= It has the potential to probe the confined and the deconfined
phase of QCD.

M. Cheng et al., Phys. Rev. D 79 (2009) 074505



Kurtosis in effective models

The effective kurtosis can be calculated in effective models, e.g. in
the Polyakov-loop extended quark-meson model:

in mean-field approximation and in FRG
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(V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C83 (2011) 054904.)



Motivation

Fluctuations have so far been investigated in static systems.

» However, systems created in a heavy-ion collisions are finite in
size and time and inhomogeneous.

Necessary to propagate fluctuations explicitly!

v

v

v

Nonequilibrium chiral fluid dynamics:
> fluid dynamics + o
> phase transition model + o
» dissipation and noise




Nonequilibrium chiral fluid dynamics

» Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

oU
0u0"'0 + — + gps + 1010 = ¢

o

» Fluid dynamic expansion of the quark fluid = heat bath
T\ = (e+p)utu’ — pg"
» Energy and momentum exchange
Ty =8 =-9,T"
Selfconsistent approach within the two-particle irreducible effec-

tive action!
(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



Semiclassical equation of motion for the sigma field

U
90" + 5o T9pst notr =¢

damping term # and noise ¢ fork =0
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below T, damping by the interaction with the hard pion modes, apply
n = 22/fm from (T. S. Biro and C. Greiner, PRL 79 (1997))



Reheating and supercooling
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MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962
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Intensity of sigma fluctuations
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Pion fluctuations

So far: pion fluctuations were not considered and 77 = () = 0.
Now: extend the model to explicitly propagate pion fluctuations, too.

critical point flrst order phase transition
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Larger isospin fluctuations in a scenario with a first order phase
transition!



Correlation length

¢1: averaged correlation length from &1 = | /2°Q o=o(x)

¢o: correlation length obtained from fits to G(r) = agq + 17exp(—§)

. 2
&3: averaged correlation length from =1 =, /2|
g



Relativistic Transport Approach

cover more effects in realistic simulations of heavy-ion collisions,
here UI’QMD (www.urgmd.org)

issues:

» eventwise baryon number and charge conservation instead of
grandcanonical ensembles

» centrality selection and centrality bin width effects



Analytic toy model
Baryon number conservation limits fluctuations of net-baryon number.

N

P.(N,C) = N (n, C)e‘?‘% on [u—C,u+C]
u: the expectation value of the original Poisson distribution, N (y, C):
normalization factor, C > 0: cut parameter

C=av (1 - (Nttof) |

» An increase of the average g
net-baryon number does not [
lead to stronger fluctuations. o

» At the upper limit of [
Niot = 416 the distribution B!
changes to a J-function [
(K;ff — o) 150
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Net-baryon number distribution in UrQMD
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central Pb+Pb collisions at
Ep., = 20AGeV
fit to a Poisson distribution
shoulders are enhanced
tails are cut

decrease from K&t =
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Rapidity window dependence of the effective kurtosis

» Same qualitative behavior of the net-baryon kurtosis as expected
from the analytic toy model.

> E, = 158AGeV

Yoo t S e S S
» The net-proton kurtosis .
only slightly follows this
trend. S0 ’
» The net-charge kurtosis is [ 2 oo b
not influenced, but error ol .
bars are Iarger. 0 100 300 300 4607
<Ng>

» For small net-baryon numbers in the acceptance, the values of
net-baryon, net-proton and net-charge kurtosis are compatible
with values of 0 — 1.

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]



Energy dependence of the effective kurtosis

» adapting the rapidity
window to fix the mean
net-baryon number

» net-baryon effective
kurtosis does not show an
energy dependence

» fixed rapidity cut

» the net-baryon number
varies with /s

» for lower /s K¢ff becomes
increasingly negative

> at Ejp, = 2AGeV:
(Ng_pg) ~ 240

K"

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]
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Centrality selection, e.g. by impact parameter

We investigate central collisions with b < 2.75 fm.
The superposition of two Gauss distributions (with mean 4 » and
variance o4 o) has a negative kurtosis

0.15F
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1/8Au* + X2Au2 + 234
with Ay = [pp — pq| and 22 = o2 + o3.
s The distribution approaches
/\ a box-distribution with a

0.05

L\ Kooy — —1.2.

K_20=-0.96




Effects of centrality selection

Suggestion by STAR to reduce centrality bin width effects:

» calculate moments for each

fixed Neparge in One wider
centrality bin

» take the weighted average
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(MN et al., QM 2011 proceedings)
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problems:

» (anti-) protons constitute a
larger fraction of all charged
particles with decreasing
energy

> fixing Nenarge PUtS @ bias on
the fluctuations



Summary

<=

» nonequilibrium sigma and pion fluctuations, correlation length in
chiral fluid dynamics

» effective kurtosis within a transport model of heavy-ion collisions
> negative values for net-baryon K¢ below /s = 100 GeV

» baryon number conservation qualitatively described by a cut
Poisson distribution

» centrality selection remains a crucial issue!
Outlook:
» further study the acceptance effects in UrQMD

» extend nonequilibrium chiral fluid dynamics to study
event-by-event fluctuations
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